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If one inserts Eq. (10) into Eq. (2) and then Eqs. (2) and
(5b) into Eq. (1), one sees that the pressure is almost the pres-
sure for an axisymmetric configuration with shock ¢ + «,
except that the curvature used in this pressure equation is
no longer the curvature K of the original shock. The curva-
ture of this equivalent axisymmetric shock is

R = K(dw/dw,) (11)

Tt would have been surprising indeed if the shock for a general
body of revolution at an angle of attack a, would be of the
same shape as the axisymmetric shock of this body turned by
an angle n = «, — « (that is, at an angle «), as is the case
for the cone. By coordinating the shock characterized by o
and K at angle of attack « to a body at angle «,, a more com-
plex relationship would be expected. The relationship indi-
cated by Eq. (11) says that the curvature on the wind side
is smaller by 1— corr {corr proportional to «) than the curva-
ture K, and the curvature on the shadowside is correspond-
ingly larger by 1+ corr, but otherwise the equation for the
pressure is the same as that for s shock ¢ += « In axisym-
metric flow. If the shock of a sphere cone with cone half
angle § 4 «, is compared to that of a sphere cone with cone
half angle 8, both in axisymmetric flow, it is seen that the
curvature of the larger sphere cone is indeed smaller.

The result of the present investigation is not a solution of
the problem but a suggestion to replace the problem by an
axisymmetric one with a body 6 = «,. The whole investi-
gation is restricted to small «, and, if the afterbody is conical,
it is suggested that the conical relation between the effective
and the geometrical angles of attack be used [see Eq. (8)
in Ref. 3].

Comparison of measurements for sphere cones at angle of
attack with such measurements for equivalent sphere cones
at zero angle of attack shows excellent agreement with each
other and with numerical caleulations according to Egs.
(1-11), if based on the axisymmetric shock of the equivalent
body.
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Approximate Determination of the
Incompressible Flow Region in Front

of a Blunt Body in Hypersonic Flow
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Nomenclature

Mach number
strength of doublet
ratio of specific heats
gas eonstant
absolute temperature
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Subscripts

1 = ahead of shock
2 = behind shock

N the case of hypersonic flow, a shock wave stands in front
of the blunt body and forms a region of nearly incom-
pressible flow around the stagnation region; the flow, behind
the shock and in the vicinity of the z axis (see Fig. 1), may be
agsumed to be nearly uniform. In this paper an attempt
is made' to determine the extent of the incompressible flow
region in front of a hemispherical body (two-dimensional case).
The shock-detachment distance §*' is assumed to be known.
In the field of hydrodynamics,? popular use is made of the
method of combining two flow patterns (namely, the source
in a uniform flow) and of interpreting the results as the flow
past a rigid body. Here a similar approach is adapted to
find the flow characteristics on the cylindrical curvature of
the body. Therefore, a uniform flow is superimposed on a
doublet at O (see Fig. 1), and either the potential function
or the stream function can be used fecr the solution. The
author’s preference is to use the stream function here.
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Fig. 1 Axially symmetrie flow

The stream function for the combination of a doublet and
a uniform flow with velocity . in the positive x direction is

¥ o= wy — p/2mrty 1
Writing u = 2wa’us, the stream function becomes
¥ = uyll — (a*/r9] = wlr — (a*/r)] sind (2)

The velocity at any point is expressed most conveniently in
polar coordinates, and the radial and cireumferential com-
ponents are, respectively,

5ua-v"‘= (1/r)(Q¢/08) = us{l — (a?/r9)] cosb (3)
ae = —oY/or = —w[l + (a?/r?)] sinb (4)

On the eylindrical surface r = @, u, vanishes, and the circum-
ferential component becomes '

Uy = —2u, sind (5)

The equation of a circle with its center at point (r,0') and
radius r is

(@ —=mtFy? =12 e (6)
Now, relating the shock detachment distance 6* with the dis-
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tance d of the point O’ on the z axis, where M = 0.3, by the
empirical relation

6*/{1 =2 UQ/’le (7)

The sonic velocity ¢ at O’ is approximately equal to (kgRT:)2,
and the Mach number is

M =038 = u'/c 8

Using Eq. (8), the velocity .’ is obtained, and in Eq. (7),
6* 1s known and the velocity us (downstream of the shock) is
obtained from normal-shock relationships.®> Thus the point
0’ is established by the distance d of Eq. (7). For M = 0.3,
uy’ is equal to 4y of Eq. (5). By use of Eq. (5), angle 8 is
found. Thus point B(z,y) on the body is established.

In Eq. (6), the values of X and Y are known for point B.
Thus the radius » of the circle through points B,0’, and B’,
and with the center on the z axis, is found from Eq. (6).

The arc BO’B’ is the required line of M = 0.3.
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Correlation of Hypersonic
Static-Stability Data from Blunt
Slender Cones

Jack D. WHITFIELD* AND W. WoLNYT
ARO Inc., Arnold Air Force Station, Tenn.

ORRELATIONS of experimental hypersonic static-
stability data from blunted slender cones have been ob-
tained using simple Newtonian theory.! The basis for the
correlation is developed in Ref. 1, and the purpose of this
note is to present hypersonic static-stability data from blunt
slender cones in a correlated manner suitable for use in ob-
taining quick, reasonably accurate predictions.

The nomenclature used is noted in Fig. 1, and the correla-
tions of mnormal-force -coeflicients and pitching-moment
coefficients are presented in Figs. 2 and 3, respectively. The
correlations are based on. the parametric dependence de-
veloped in Ref. 1, that is,

Cy « a2 4 («/0)](1 — £
and
Cn = Cx{(2/30c)[(1 — £8)/(1 — )] — E[A — 6c)/8c]}

The correlaticns contain experimental data®? covering a
Mach number range from 8 to 22 and a bluntness ratio range
from O (sharp) to 0.5. The Mach number “independence”
of these essentially inviscid data is evident. Apparently for
these cases Mach number 8 is sufficiently high to establish
the limiting hypersonic static stability for these simple
shapes.
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Fig. 1 Cone nomen-
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Fig.2 Correlation of norinal-force coefficients from blunt
slender cones
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Fig. 3 Correlation of pitching-moment coefficients from
blunt slender cones



